Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Struct Biol ; 80(Pt 3): 181-193, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38372589

RESUMO

Low-molecular-weight (LMW) thiols are involved in many processes in all organisms, playing a protective role against reactive species, heavy metals, toxins and antibiotics. Actinobacteria, such as Mycobacterium tuberculosis, use the LMW thiol mycothiol (MSH) to buffer the intracellular redox environment. The NADPH-dependent FAD-containing oxidoreductase mycothiol disulfide reductase (Mtr) is known to reduce oxidized mycothiol disulfide (MSSM) to MSH, which is crucial to maintain the cellular redox balance. In this work, the first crystal structures of Mtr are presented, expanding the structural knowledge and understanding of LMW thiol reductases. The structural analyses and docking calculations provide insight into the nature of Mtrs, with regard to the binding and reduction of the MSSM substrate, in the context of related oxidoreductases. The putative binding site for MSSM suggests a similar binding to that described for the homologous glutathione reductase and its respective substrate glutathione disulfide, but with distinct structural differences shaped to fit the bulkier MSSM substrate, assigning Mtrs as uniquely functioning reductases. As MSH has been acknowledged as an attractive antitubercular target, the structural findings presented in this work may contribute towards future antituberculosis drug development.


Assuntos
Actinobacteria , Glicopeptídeos , Inositol , NADH NADPH Oxirredutases , Oxirredutases , Oxirredutases/metabolismo , Compostos de Sulfidrila/química , Cisteína/química , Cisteína/metabolismo , Oxirredução
2.
Antioxidants (Basel) ; 12(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37371954

RESUMO

Although bacterial thioredoxin reductase-like ferredoxin/flavodoxin NAD(P)+ oxidoreductases (FNRs) are similar in terms of primary sequences and structures, they participate in diverse biological processes by catalyzing a range of different redox reactions. Many of the reactions are critical for the growth, survival of, and infection by pathogens, and insight into the structural basis for substrate preference, specificity, and reaction kinetics is crucial for the detailed understanding of these redox pathways. Bacillus cereus (Bc) encodes three FNR paralogs, two of which have assigned distinct biological functions in bacillithiol disulfide reduction and flavodoxin (Fld) reduction. Bc FNR2, the endogenous reductase of the Fld-like protein NrdI, belongs to a distinct phylogenetic cluster of homologous oxidoreductases containing a conserved His residue stacking the FAD cofactor. In this study, we have assigned a function to FNR1, in which the His residue is replaced by a conserved Val, in the reduction of the heme-degrading monooxygenase IsdG, ultimately facilitating the release of iron in an important iron acquisition pathway. The Bc IsdG structure was solved, and IsdG-FNR1 interactions were proposed through protein-protein docking. Mutational studies and bioinformatics analyses confirmed the importance of the conserved FAD-stacking residues on the respective reaction rates, proposing a division of FNRs into four functionally unique sequence similarity clusters likely related to the nature of this residue.

3.
FEBS Open Bio ; 11(11): 3019-3031, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34492167

RESUMO

Low-molecular-weight (low Mr ) thioredoxin reductases (TrxRs) are homodimeric NADPH-dependent dithiol flavoenzymes that reduce thioredoxins (Trxs) or Trx-like proteins involved in the activation networks of enzymes, such as the bacterial class Ib ribonucleotide reductase (RNR). During the last few decades, TrxR-like ferredoxin/flavodoxin NADP+ oxidoreductases (FNRs) have been discovered and characterized in several types of bacteria, including those not encoding the canonical plant-type FNR. In Bacillus cereus, a TrxR-like FNR has been shown to reduce the flavodoxin-like protein NrdI in the activation of class Ib RNR. However, some species only encode TrxR and lack the homologous TrxR-like FNR. Due to the structural similarity between TrxRs and TrxR-like FNRs, as well as variations in their occurrence in different microorganisms, we hypothesized that low Mr TrxR may be able to replace TrxR-like FNR in, for example, the reduction of NrdI. In this study, characterization of TrxR from B. cereus has revealed a weak FNR activity toward NrdI reduction. Additionally, the crystal structure shows that only one out of two binding sites of the B. cereus TrxR homodimer is occupied with NADPH, indicating a possible asymmetric co-substrate binding in TrxR.


Assuntos
Bacillus cereus/enzimologia , Tiorredoxina Dissulfeto Redutase/metabolismo , Bacillus cereus/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Cristalografia por Raios X , Ferredoxina-NADP Redutase/metabolismo , NADP/metabolismo , Oxirredução , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/metabolismo , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxinas
4.
Biomolecules ; 11(6)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207929

RESUMO

A series of thiosemicarbazone-coumarin hybrids (HL1-HL3 and H2L4) has been synthesised in 12 steps and used for the preparation of mono- and dinuclear copper(II) complexes, namely Cu(HL1)Cl2 (1), Cu(HL2)Cl2 (2), Cu(HL3)Cl2 (3) and Cu2(H2L4)Cl4 (4), isolated in hydrated or solvated forms. Both the organic hybrids and their copper(II) and dicopper(II) complexes were comprehensively characterised by analytical and spectroscopic techniques, i.e., elemental analysis, ESI mass spectrometry, 1D and 2D NMR, IR and UV-vis spectroscopies, cyclic voltammetry (CV) and spectroelectrochemistry (SEC). Re-crystallisation of 1 from methanol afforded single crystals of copper(II) complex with monoanionic ligand Cu(L1)Cl, which could be studied by single crystal X-ray diffraction (SC-XRD). The prepared copper(II) complexes and their metal-free ligands revealed antiproliferative activity against highly resistant cancer cell lines, including triple negative breast cancer cells MDA-MB-231, sensitive COLO-205 and multidrug resistant COLO-320 colorectal adenocarcinoma cell lines, as well as in healthy human lung fibroblasts MRC-5 and compared to those for triapine and doxorubicin. In addition, their ability to reduce the tyrosyl radical in mouse R2 protein of ribonucleotide reductase has been ascertained by EPR spectroscopy and the results were compared with those for triapine.


Assuntos
Cobre/química , Cumarínicos/síntese química , Piridinas/síntese química , Tiossemicarbazonas/síntese química , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/química , Cumarínicos/química , Cumarínicos/farmacologia , Cristalografia por Raios X/métodos , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Piridinas/química , Relação Estrutura-Atividade , Tiossemicarbazonas/química
5.
Plant Cell ; 33(9): 2915-2934, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34240188

RESUMO

An understanding of land plant evolution is a prerequisite for in-depth knowledge of plant biology. Here we extract and explore information hidden in the increasing number of sequenced plant genomes, from bryophytes to angiosperms, to elucidate a specific biological question-how peptide signaling evolved. To conquer land and cope with changing environmental conditions, plants have gone through transformations that must have required innovations in cell-to-cell communication. We discuss peptides mediating endogenous and exogenous changes by interaction with receptors activating intracellular molecular signaling. Signaling peptides were discovered in angiosperms and operate in tissues and organs such as flowers, seeds, vasculature, and 3D meristems that are not universally conserved across land plants. Nevertheless, orthologs of angiosperm peptides and receptors have been identified in nonangiosperms. These discoveries provoke questions regarding coevolution of ligands and their receptors, and whether de novo interactions in peptide signaling pathways may have contributed to generate novel traits in land plants. The answers to such questions will have profound implications for the understanding of the evolution of cell-to-cell communication and the wealth of diversified terrestrial plants. Under this perspective, we have generated, analyzed, and reviewed phylogenetic, genomic, structural, and functional data to elucidate the evolution of peptide signaling.


Assuntos
Embriófitas/genética , Evolução Molecular , Genoma de Planta , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Embriófitas/metabolismo , Peptídeos/genética , Filogenia , Proteínas de Plantas/genética
6.
Inorg Chem ; 60(15): 11297-11319, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34279079

RESUMO

Three new thiosemicarbazones (TSCs) HL1-HL3 as triapine analogues bearing a redox-active phenolic moiety at the terminal nitrogen atom were prepared. Reactions of HL1-HL3 with CuCl2·2H2O in anoxic methanol afforded three copper(II) complexes, namely, Cu(HL1)Cl2 (1), [Cu(L2)Cl] (2'), and Cu(HL3)Cl2 (3), in good yields. Solution speciation studies revealed that the metal-free ligands are stable as HL1-HL3 at pH 7.4, while being air-sensitive in the basic pH range. In dimethyl sulfoxide they exist as a mixture of E and Z isomers. A mechanism of the E/Z isomerization with an inversion at the nitrogen atom of the Schiff base imine bond is proposed. The monocationic complexes [Cu(L1-3)]+ are the most abundant species in aqueous solutions at pH 7.4. Electrochemical and spectroelectrochemical studies of 1, 2', and 3 confirmed their redox activity in both the cathodic and the anodic region of potentials. The one-electron reduction was identified as metal-centered by electron paramagnetic resonance spectroelectrochemistry. An electrochemical oxidation pointed out the ligand-centered oxidation, while chemical oxidations of HL1 and HL2 as well as 1 and 2' afforded several two-electron and four-electron oxidation products, which were isolated and comprehensively characterized. Complexes 1 and 2' showed an antiproliferative activity in Colo205 and Colo320 cancer cell lines with half-maximal inhibitory concentration values in the low micromolar concentration range, while 3 with the most closely related ligand to triapine displayed the best selectivity for cancer cells versus normal fibroblast cells (MRC-5). HL1 and 1 in the presence of 1,4-dithiothreitol are as potent inhibitors of mR2 ribonucleotide reductase as triapine.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Cobre/química , Piridinas/química , Tiossemicarbazonas/química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Complexos de Coordenação/química , Eletroquímica , Humanos , Oxirredução , Soluções , Estereoisomerismo
7.
Arch Biochem Biophys ; 702: 108826, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33684359

RESUMO

Structural studies show that enzymes have a limited number of unique folds, although structurally related enzymes have evolved to perform a large variety of functions. In this review, we have focused on enzymes containing the low molecular weight thioredoxin reductase (low Mr TrxR) fold. This fold consists of two domains, both containing a three-layer ßßα sandwich Rossmann-like fold, serving as flavin adenine dinucleotide (FAD) and, in most cases, pyridine nucleotide (NAD(P)H) binding-domains. Based on a search of the Protein Data Bank for all published structures containing the low Mr TrxR-like fold, we here present a comprehensive overview of enzymes with this structural architecture. These range from TrxR-like ferredoxin/flavodoxin NAD(P)+ oxidoreductases, through glutathione reductase, to NADH peroxidase. Some enzymes are solely composed of the low Mr TrxR-like fold, while others contain one or two additional domains. In this review, we give a detailed description of selected enzymes containing only the low Mr TrxR-like fold, however, catalyzing a diversity of chemical reactions. Our overview of this structurally similar, yet functionally distinct group of flavoprotein oxidoreductases highlights the fascinating and increasing number of studies describing the diversity among these enzymes, especially during the last decade(s).


Assuntos
Flavoproteínas Transferidoras de Elétrons/química , Flavoproteínas Transferidoras de Elétrons/metabolismo , Homologia de Sequência de Aminoácidos , Tiorredoxina Dissulfeto Redutase/química , Biocatálise
8.
Biochemistry ; 59(51): 4793-4798, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33326741

RESUMO

Low G+C Gram-positive Firmicutes, such as the clinically important pathogens Staphylococcus aureus and Bacillus cereus, use the low-molecular weight thiol bacillithiol (BSH) as a defense mechanism to buffer the intracellular redox environment and counteract oxidative stress encountered by human neutrophils during infections. The protein YpdA has recently been shown to function as an essential NADPH-dependent reductase of oxidized bacillithiol disulfide (BSSB) resulting from stress responses and is crucial for maintaining the reduced pool of BSH and cellular redox balance. In this work, we present the first crystallographic structures of YpdAs, namely, those from S. aureus and B. cereus. Our analyses reveal a uniquely organized biological tetramer; however, the structure of the monomeric subunit is highly similar to those of other flavoprotein disulfide reductases. The absence of a redox active cysteine in the vicinity of the FAD isoalloxazine ring implies a new direct disulfide reduction mechanism, which is backed by the presence of a potentially gated channel, serving as a putative binding site for BSSB in the proximity of the FAD cofactor. We also report enzymatic activities for both YpdAs, which along with the structures presented in this work provide important structural and functional insight into a new class of FAD-containing NADPH-dependent oxidoreductases, related to the emerging fight against pathogenic bacteria.


Assuntos
Proteínas de Bactérias/química , Cisteína/análogos & derivados , Flavina-Adenina Dinucleotídeo/química , Glucosamina/análogos & derivados , NADP/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Bacillus cereus/enzimologia , Cristalografia por Raios X , Cisteína/química , Glucosamina/química , Oxirredução , Estrutura Quaternária de Proteína , Staphylococcus aureus/enzimologia
9.
Plants (Basel) ; 8(7)2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31311120

RESUMO

Plants both generate and shed organs throughout their lifetime. Cell separation is in function during opening of anthers to release pollen; floral organs are detached after pollination when they have served their purpose; unfertilized flowers are shed; fruits and seeds are abscised from the mother plant to secure the propagation of new generations. Organ abscission takes place in specialized abscission zone (AZ) cells where the middle lamella between adjacent cell files is broken down. The plant hormone ethylene has a well-documented promoting effect on abscission, but mutation in ethylene receptor genes in Arabidopsis thaliana only delays the abscission process. Microarray and RNA sequencing have identified a large number of genes differentially expressed in the AZs, especially genes encoding enzymes involved in cell wall remodelling and disassembly. Mutations in such genes rarely give a phenotype, most likely due to functional redundancy. In contrast, mutation in the INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) blocks floral organ abscission in Arabidopsis. IDA encodes a small peptide that signals through the leucine-rich repeat receptor-like kinases HAESA (HAE) and HAE-LIKE2 (HSL2) to control floral organ abscission and facilitate lateral root emergence. Untimely abscission is a severe problem in many crops, and in a more applied perspective, it is of interest to investigate whether IDA-HAE/HSL2 is involved in other cell separation processes and other species. Genes encoding IDA and HSL2 orthologues have been identified in all orders of flowering plants. Angiosperms have had enormous success, with species adapted to all kinds of environments, adaptations which include variation with respect to which organs they shed. Here we review, from an evolutionary perspective, the properties of the IDA-HAE/HSL2 signaling module and the evidence for its hypothesized involvement in various cell separation processes in angiosperms.

10.
Biochem Mol Biol Educ ; 47(3): 318-332, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30742352

RESUMO

Many laboratory courses consist of short and seemingly unconnected individual laboratory exercises. To increase the course consistency, relevance, and student engagement, we have developed a research-inspired and project-based module, "From Gene to Structure and Function". This 2.5-week full-day biochemistry and structural biology module covers protein expression, purification, structure solving, and characterization. The module is centered around the flavodoxin-like protein NrdI, involved in the activation of the bacterial ribonucleotide reductase enzyme system. Through an in-depth focus on one specific protein, the students will learn the basic laboratory skills needed in order to generate a broader knowledge and breadth within the field. With respect to generic skills, the students report their findings as a scientific article, with the aim to learn to present concise research results and write scientific papers. The current research-inspired project has the potential of being further developed into a more discovery-driven project and extended to include other molecular biological techniques or biochemical/biophysical characterizations. In student evaluations, this research-inspired laboratory course has received very high ratings and been highly appreciated, where the students have gained research experience for more independent future work in the laboratory. © 2019 The Authors. Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 47(3):318-332, 2019.


Assuntos
Flavodoxina/química , Flavodoxina/isolamento & purificação , Laboratórios , Aprendizagem , Pesquisa/educação , Bioquímica , Cristalização , Flavodoxina/biossíntese , Modelos Moleculares , Estrutura Molecular , Estudantes
11.
Biochemistry ; 57(37): 5427-5436, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30142264

RESUMO

Flavodoxins (Flds) are small, bacterial proteins that transfer electrons to various redox enzymes. Flavodoxins are reduced by ferredoxin/flavodoxin NADP+ oxidoreductases (FNRs), but little is known of the FNR-Fld interaction. Here, we compare the interactions of two flavodoxins (Fld1-2), one flavodoxin-like protein (NrdI), and three different thioredoxin reductase (TrxR)-like FNRs (FNR1-3), all from Bacillus cereus. Steady-state kinetics shows that the FNR2-Fld2 electron transfer pair is particularly efficient, and redox potential measurements also indicate that this is the most favorable electron donor/acceptor pair. Furthermore, crystal structures of FNR1 and FNR2 show that the proteins have crystallized in different conformations, a closed and an open conformation, respectively. We suggest that a large-scale conformational rearrangement takes place during the FNR catalytic cycle to allow for the binding and reduction of the Fld and, subsequently, the re-reduction of the FNR by NADPH. Finally, inspection of the residues surrounding the FAD cofactor in the FNR active site shows that a key isoalloxazine ring-stacking residue is different in FNR1 and FNR2, which could explain the large difference in catalytic efficiency between the two FNRs. To date, all of the characterized TrxR-like FNRs have a residue with aromatic character stacking against the FAD isoalloxazine ring, and this has been thought to be a conserved feature of this class of FNRs. FNR1, however, has a valine in this position. Bioinformatic analysis shows that the TrxR-like FNRs can actually be divided into two groups, one group where the FAD-stacking residue has aromatic character and another group where it is valine.


Assuntos
Bacillus cereus/enzimologia , Flavodoxina/metabolismo , NADH NADPH Oxirredutases/classificação , NADH NADPH Oxirredutases/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Transporte de Elétrons , Flavodoxina/química , Modelos Moleculares , NADH NADPH Oxirredutases/química , Oxirredução , Conformação Proteica
12.
Inorg Chem ; 56(6): 3532-3549, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28252952

RESUMO

As ribonucleotide reductase (RNR) plays a crucial role in nucleic acid metabolism, it is an important target for anticancer therapy. The thiosemicarbazone Triapine is an efficient R2 inhibitor, which has entered ∼20 clinical trials. Thiosemicarbazones are supposed to exert their biological effects through effectively binding transition-metal ions. In this study, six iminodiacetate-thiosemicarbazones able to form transition-metal complexes, as well as six dicopper(II) complexes, were synthesized and fully characterized by analytical, spectroscopic techniques (IR, UV-vis; 1H and 13C NMR), electrospray ionization mass spectrometry, and X-ray diffraction. The antiproliferative effects were examined in several human cancer and one noncancerous cell lines. Several of the compounds showed high cytotoxicity and marked selectivity for cancer cells. On the basis of this, and on molecular docking calculations one lead dicopper(II) complex and one thiosemicarbazone were chosen for in vitro analysis as potential R2 inhibitors. Their interaction with R2 and effect on the Fe(III)2-Y· cofactor were characterized by microscale thermophoresis, and two spectroscopic techniques, namely, electron paramagnetic resonance and UV-vis spectroscopy. Our findings suggest that several of the synthesized proligands and copper(II) complexes are effective antiproliferative agents in several cancer cell lines, targeting RNR, which deserve further investigation as potential anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Compostos Organometálicos/farmacologia , Ribonucleotídeo Redutases/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cobre/química , Cobre/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Iminoácidos/química , Iminoácidos/farmacologia , Camundongos , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Ribonucleotídeo Redutases/isolamento & purificação , Ribonucleotídeo Redutases/metabolismo , Relação Estrutura-Atividade , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Células Tumorais Cultivadas
13.
Bio Protoc ; 7(8): e2223, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34541225

RESUMO

This protocol describes how to measure protein-protein interactions by microscale thermophoresis (MST) using the MonolithTM NT.115 instrument (NanoTemper). We have used the protocol to determine the binding affinities between three different flavodoxin reductases (FNRs) and a flavodoxin-like protein, NrdI, from Bacillus cereus ( Lofstad et al., 2016 ). NrdI is essential in the activation of the manganese-bound form of the class Ib ribonucleotide reductase (RNR) system. RNRs, in turn, are the only source of the de novo synthesis of deoxyribonucleotides required for DNA replication and repair in all living organisms.

14.
Biochemistry ; 55(36): 4998-5001, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27559930

RESUMO

To reduce ribonucleotides to deoxyribonucleotides, the manganese-bound form of class Ib ribonucleotide reductase (RNR) must be activated via a pathway that involves redox protein(s). The reduced flavoprotein NrdI is an important protein in this pathway, as it reduces dioxygen to superoxide. Superoxide then reacts with the RNR Mn(II)2 site to generate a tyrosyl radical that is required for catalysis. A native NrdI reductase has not yet been identified. We herein demonstrate through kinetic and spectroscopic studies that an endogenous flavodoxin reductase can function as the NrdI reductase in Bacillus cereus. When the flavodoxin reductase reduces NrdI, tyrosyl radical formation in RNR is promoted under aerobic conditions, significantly increasing the radical yield. Thus, a missing piece of the class Ib RNR NrdI redox pathway has finally been identified.


Assuntos
Bacillus cereus/enzimologia , NADH NADPH Oxirredutases/metabolismo , Ribonucleotídeo Redutases/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Ativação Enzimática
15.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 6): 777-80, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24915092

RESUMO

Ferredoxin/flavodoxin-NADP(H) oxidoreductases (FNRs) are key enzymes involved in catalysing electron transfer between ferredoxins/flavodoxins and NAD(P)H/NAD(P)+. In Bacillus cereus there are three genes that may encode FNRs, and the Bc0385 FNR has been cloned, overexpressed, purified and successfully crystallized in its NADPH/NADP+-free form. Diffraction data have been collected to 2.5 Šresolution from crystals belonging to the orthorhombic space group P21212, with unit-cell parameters a=57.2, b=164.3, c=95.0 Å, containing two FNR molecules in the asymmetric unit. The structure of the Bc0385 FNR has been solved by molecular replacement, and is a member of the homodimeric thioredoxin reductase-like class of FNRs.


Assuntos
Bacillus cereus/enzimologia , Ferredoxina-NADP Redutase/química , Sequência de Aminoácidos , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Dados de Sequência Molecular
16.
J Biol Inorg Chem ; 19(6): 893-902, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24585102

RESUMO

Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to their corresponding deoxyribonucleotides, playing a crucial role in DNA repair and replication in all living organisms. Class Ib RNRs require either a diiron-tyrosyl radical (Y·) or a dimanganese-Y· cofactor in their R2F subunit to initiate ribonucleotide reduction in the R1 subunit. Mycobacterium tuberculosis, the causative agent of tuberculosis, contains two genes, nrdF1 and nrdF2, encoding the small subunits R2F-1 and R2F-2, respectively, where the latter has been thought to serve as the only active small subunit in the M. tuberculosis class Ib RNR. Here, we present evidence for the presence of an active Fe 2 (III) -Y· cofactor in the M. tuberculosis RNR R2F-1 small subunit, supported and characterized by UV-vis, X-band electron paramagnetic resonance, and resonance Raman spectroscopy, showing features similar to those for the M. tuberculosis R2F-2-Fe 2 (III) -Y· cofactor. We also report enzymatic activity of Fe 2 (III) -R2F-1 when assayed with R1, and suggest that the active M. tuberculosis class Ib RNR can use two different small subunits, R2F-1 and R2F-2, with similar activity.


Assuntos
Mycobacterium tuberculosis/enzimologia , Subunidades Proteicas/metabolismo , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/metabolismo , Domínio Catalítico , Subunidades Proteicas/química , Ribonucleotídeo Redutases/classificação
17.
ACS Chem Biol ; 9(2): 526-37, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24295378

RESUMO

Class Ib ribonucleotide reductases (RNRs) use a dimetal-tyrosyl radical (Y•) cofactor in their NrdF (ß2) subunit to initiate ribonucleotide reduction in the NrdE (α2) subunit. Contrary to the diferric tyrosyl radical (Fe(III)2-Y•) cofactor, which can self-assemble from Fe(II)2-NrdF and O2, generation of the Mn(III)2-Y• cofactor requires the reduced form of a flavoprotein, NrdIhq, and O2 for its assembly. Here we report the 1.8 Å resolution crystal structure of Bacillus cereus Fe2-NrdF in complex with NrdI. Compared to the previously solved Escherichia coli NrdI-Mn(II)2-NrdF structure, NrdI and NrdF binds similarly in Bacillus cereus through conserved core interactions. This protein-protein association seems to be unaffected by metal ion type bound in the NrdF subunit. The Bacillus cereus Mn(II)2-NrdF and Fe2-NrdF structures, also presented here, show conformational flexibility of residues surrounding the NrdF metal ion site. The movement of one of the metal-coordinating carboxylates is linked to the metal type present at the dimetal site and not associated with NrdI-NrdF binding. This carboxylate conformation seems to be vital for the water network connecting the NrdF dimetal site and the flavin in NrdI. From these observations, we suggest that metal-dependent variations in carboxylate coordination geometries are important for active Y• cofactor generation in class Ib RNRs. Additionally, we show that binding of NrdI to NrdF would structurally interfere with the suggested α2ß2 (NrdE-NrdF) holoenzyme formation, suggesting the potential requirement for NrdI dissociation before NrdE-NrdF assembly after NrdI-activation. The mode of interactions between the proteins involved in the class Ib RNR system is, however, not fully resolved.


Assuntos
Bacillus cereus/química , Bacillus cereus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Flavoproteínas/metabolismo , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/metabolismo , Cristalografia por Raios X , Flavoproteínas/química , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica
18.
PLoS One ; 8(7): e69411, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936007

RESUMO

Thioredoxin-like proteins contain a characteristic C-x-x-C active site motif and are involved in a large number of biological processes ranging from electron transfer, cellular redox level maintenance, and regulation of cellular processes. The mechanism for deprotonation of the buried C-terminal active site cysteine in thioredoxin, necessary for dissociation of the mixed-disulfide intermediate that occurs under thiol/disulfide mediated electron transfer, is not well understood for all thioredoxin superfamily members. Here we have characterized a 8.7 kD thioredoxin (BC3987) from Bacillus cereus that unlike the typical thioredoxin appears to use the conserved Thr8 side chain near the unusual C-P-P-C active site to increase enzymatic activity by forming a hydrogen bond to the buried cysteine. Our hypothesis is based on biochemical assays and thiolate pKa titrations where the wild type and T8A mutant are compared, phylogenetic analysis of related thioredoxins, and QM/MM calculations with the BC3987 crystal structure as a precursor for modeling of reduced active sites. We suggest that our model applies to other thioredoxin subclasses with similar active site arrangements.


Assuntos
Bacillus cereus/metabolismo , Tiorredoxinas/metabolismo , Motivos de Aminoácidos , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Cisteína/metabolismo , Dissulfetos/metabolismo , Ligação de Hidrogênio , Insulina/metabolismo , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Óperon/genética , Oxirredução , Filogenia , Tiorredoxinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...